

Presented by: Dustin Kapson

Presentation Outline

- A. The Challenge and Outcome
- B. Lessons Learned
 - Filling Data Gaps => the Lever
 - Establish Efficient Flows
 - Persistence Pays Off
- C. Closing Remarks
 - Collaboration Always Key

The Challenge

- Tree farm/residential property along a protected stream
- Historic releases from:
 - 1,000-gallon heating oil UST
 - 290-gallon gasoline UST
- USTs/source reportedly removed
- Dissolved GW Contamination Persists
 - MTBE: ~500 μg/L to ~1,000 μg/L
 - Benzene: ~100 μg/L to ~300 μg/L

Project Drivers

- Buyer and Seller both ready
- Both want contamination eliminated
- As quickly and 'sustainably' as possible

Effectively, eliminate the last 10% of the problem instead of MNA

The Outcome

- Groundwater 'good enough to drink'
- Remedy: Aerobic Bioremediation
 - Groundwater Re-Circulation
 - Dissolved Oxygen 'Bubbler'
 - Bio-stimulation + Bio-augmentation

Treatment Summary

- 3 Years of Continuous Operation (99% run time)
- ~ 2.5 Million Gallons Treated
- ~24 O&M Visits
- 11 Sampling Events
- 11 vertical injection/extraction wells
- 2 horizonal injection wells

Total remediation cost = 5750,000

Leveraging Filled Data Gaps

- Contaminant Source Removal Status?
- Source Beneath Building?
- Conductivity/Recharge?
- Geochemistry?
- Any Bugs? Any Bubbles?

Leveraging Data

Riding the Diabase Slide

Leveraging Data

Biologic Site Data

Samplers

Leveraging Data

Biotrap Data

Key Findings:

- The methylibium petroleiphilum strain (PM1) appeared to be preexisting at the site, and thrived during the pilot study period
- The BioAug unit indicated eubacteria (EBAC) biomass increased by two orders of magnitude (10⁷ cells/bead), indicating the in-situ survival of the ENV404 bacterial culture.
- Populations of sulfate-reducing bacteria also showed a substantial increase in the BioAug unit.

Sample Name Sample Date	MW-3 EOx + Nutrient 01/24/2018	MW-3 BioAug 01/24/2018
Aerobic BTEX and MTBE	cells/bead	cells/bead
Toluene/Benzene Dioxygenase (TOD)	<2.50E+02	2.16E+04
Phenol Hydroxylase (PHE)	4.34E+02	1.35E+05
Toluene 2 Monooxygenase/Phenol Hydroxylase (RDEG)	6.10E+03	3.33E+04
Toluene Ring Hydroxylating Monooxygenases (RMO)	<2.50E+02	1.47E+04
Xylene/Toluene Monooxygenase (TOL)	<2.50E+02	<2.50E+02
Ethylbenzene/Isopropylbenzene Dioxygenase (EDO)	<2.50E+02	<2.50E+02
Biphenyl/Isopropylbenzene Dioxygenase (BPH4)	<2.50E+02	<2.50E+02
Methylibium petroleiphilum PM1 (PM1)	1.28E+04	4.55E+04
TBA Monooxygenase (TBA)	<2.50E+02	<2.50E+02

Establish Efficient Flow(s)

Successful Data Management Plan Design => Successful Remedial Design

MTBE

- Reliable, organized data -> Confident Decision Making
- Unlocks the door to remedial system optimization

Establish Efficient Flow(s)

Successful Data Management Plan Design => Successful Remedial Design

BENZENE

• Less time communicating results = more time to optimize treatment approach

Mechanically Efficient Flow(s)

Recharged Flow > uses DO, requires less amendments Minimizes problems

Unconfined aquifer

Figures from Hornberger et al. (1998

Specific yield = S_v

Optimal Flow, Bugs Grow

System Flows – Phase 1 Operations

4 vertical injection wells, 1 horizontal injection trench

4/5 vertical extraction wells (1 deep)

Approx. Operation	Total Gallons	Average Gallons	Average Gallons
Period (Days)	Recirculated/Delivered	Per Day	Per Minute
851	1,531,635	1,800	1.25

System Flows – Phase 2 Operations

3 vertical injection wells, 2 horizontal injection trenches

6 vertical extraction wells (1 deep)

Approx. Operation	Total Gallons	Average Gallons	Average Gallons
Period (Days)	Recirculated/Delivered	Per Day	Per Minute
232	835,294	3,600	2.50

- POINTS OF EMPHASIS:
 - SYSTEM DELIVERY CLOSER TO PLANE OF FLOW MADE A DIFFERENCE
 - HORIZONTAL > VERTICAL (DELIVERY) IF GW FLOW IS PREDOMINANTLY HORIZONTAL
 - MORE BUBBLES, MORE BUGS, MORE DEGRADATION

Persistent Optimization

Analytical / Modeling Tools Used to Understand and Adjust System Operations

Persistent Optimization

- Continuous field experience/involvement was invaluable
- Group discussions respecting input from everyone

Closing Remarks

If you want to do great work, surround yourself with great people.

